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Abstract

Heightened areas of spatial relative risk for ASD, or ASD hotspots, in Utah were identified using 

adaptive kernel density functions. Children ages four, six and eight with ASD from multiple birth 

cohorts were identified by the Utah Registry of Autism and Developmental Disabilities 

(URADD). Each ASD case was gender-matched to 20 birth cohort controls. Demographic and 

socioeconomic characteristics of children born inside versus outside ASD hotspots were 

compared. ASD hotspots were found in the surveillance area for all but one birth cohort and age 

group sample; maximum relative risk in these hotspots ranged from 1.8 to 3.0. Associations were 

found between higher socioeconomic status (SES) and birth residence in an ASD hotspot in five 

out of six birth cohort and age group samples.
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Autism Spectrum Disorders (ASD) are neurodevelopmental disorders with a complex 

etiology characterized by deficits in social, communicative, and behavioral functioning. The 

measured prevalence of ASD has risen sharply over the past three decades in the U.S. with 

early studies reporting estimates of 0.7 (Treffert 1970) to 3.3 (Burd et al.1987) cases per 
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10,000 and more recent studies reporting 147 cases per 10,000 (CDC 2014). Similar 

increases have been observed in Utah where initial surveillance studies based on DSM III 

diagnostic criteria identified four autism cases per 10,000 in the mid-1980’s (Ritvo et al. 

1989) and recent studies based on DSM-IV-TR criteria identified 186 ASD cases per 10,000 

(CDC 2014).

Genetics play a central role in ASD’s etiology (Sutcliffe 2008; Abrahams and Geschwind 

2008); however, genetic risk factors alone fail to fully explain ASD’s occurrence (London 

and Etzel 2000; Hallmayer et al. 2011). Numerous extrinsic risk factors have been 

implicated in the development of ASD suggesting environment-by-genetic causal 

mechanisms (Persico and Bourgeron 2006; Altevogt et al. 2008). Environmental risk factors 

currently associated with ASD include prenatal and perinatal factors such as advanced 

parental age, breech presentation, maternal pregnancy weight gain, and maternal fever 

during pregnancy (e.g. Croen et al. 2007; Bilder et al. 2009; Grether et al. 2009; Bilder et al. 

2013; Zerbo et al. 2013), chemical and pollutant exposures including hazardous air 

pollutants, heavy metals and pesticides (e.g. Windham et al. 2006; Roberts et al. 2007; 

Kalkbrenner et al. 2010; Volk et al. 2013), and prescription medications such as valproic 

acid, thalidomide and selective serotonin reuptake inhibitors (e.g. Bromley et al. 2008; 

Strömland et al. 1994; Croen et al. 2011). Collectively, however, studies examining 

environmental ASD risk factors have found modest or inconclusive effects. Thus, the search 

for substantial environmental risk factors remains an active area of intense inquiry.

The discovery of plausible environmental exposure risk factors for ASD may be hastened 

through the application of spatial analysis and disease mapping tools to identify localized 

regions of heightened risk. These exploratory geographical tools which include cluster 

detection tests (e.g. Kuldorff 1997; Besag and Newell 1991), kernel smoothing methods 

(Kelsall and Diggle 1995a; 1995b), and generalized additive models (Tibshirani 1990; 

Webster et al. 2006) are used to monitor for non-random groupings of disease occurrences in 

count, cohort or case-control data. Findings from an exploratory geographical analysis are 

commonly used to generate hypotheses concerning disease etiology or to test for the 

influence of specific causal mechanisms in producing disease clusters.

Spatial ASD clusters may be induced by non-environmental exposure factors related to ASD 

which also follow a non-random geographical distribution such as familial risk or 

socioeconomic status. Residential segregation which is the sorting of individuals into 

neighborhoods according to cultural, racial, ethnic or economic drivers has been shown to 

produce non-random risk patterns for health conditions in the U.S. including low birth 

weight (Grady 2006; Walton 2009), preterm birth (Osypuk and Acevedo-Garcia 2008; 

Mason et al. 2009), psychological well-being (Lee 2009), and developmental disabilities 

(Fiscella and Williams 2004). A heterogeneous relationship has been reported between ASD 

and indicators of elevated socioeconomic class across studies conducted outside of the U.S. 

(Rai et al. 2012; Larsson 2005; Fombonne et al. 1997); however, ASD has been more 

consistently associated with higher socioeconomic status (SES) in recent U.S. based studies 

(Bhasin and Schendel 2007; Croen et al. 2002; Durkin et al. 2010; Windham et al. 2011). In 

Utah, mixed findings have been found between ASD and socioeconomic indicators with one 

study reporting no association between ASD risk and higher maternal education, a common 
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SES proxy, (p = 0.06; Pinborough-Zimmerman et al. 2011) and a second study confirming 

an increased ASD risk associated with higher maternal education (p = 0.03; Bilder et al. 

2009).

Previous geographical analyses of ASD have been limited to studies conducted statewide in 

California (Van Meter et al. 2010; Mazumdar et al. 2010; Mazumdar et al. 2012) and in an 

eight county area of North Carolina (Hoffman et al. 2012; Hoffman et al. 2013). The 

California-based studies applied spatial cluster detection tests to look for higher incidence of 

autism at birth (Mazumdar et al. 2010; Mazumdar et al. 2012; Van Meter et al. 2010) and at 

time of diagnosis (Mazumdar et al. 2012) using data from the California Department of 

Developmental Services. All three studies found clusters of increased autism risk. Methods 

employed in these studies to examine the association of known SES-related ASD risk factors 

with ASD clusters included covariate adjustment (Mazumdar et al. 2010; Mazumdar et al. 

2012) and mixed Poisson regression modeling (Van Meter et al. 2010). In North Carolina-

based studies, generalized additive models were formulated to predict ASD prevalence of 

children aged eight using data from the North Carolina Autism and Developmental 

Disability Monitoring (ADDM) site; the relationship between ASD prevalence and known 

ASD predictors was examined by adjusting the models with individual-level ASD risk 

factors (Hoffman et al. 2012; Hoffman et al. 2013). Although the majority of prior studies 

found evidence of an association between individual and neighborhood-level SES risk 

factors and ASD spatial risk patterns (Van Meter et al. 2010; Mazumdar et al. 2010; 

Hoffman et al. 2012), areas of excess risk persisted after adjusting for known SES-related 

ASD risk factors (Mazumdar et al. 2010; Mazumdar et al. 2012; Hoffman, Vieira and 

Daniels 2013). This suggests that contextual, social and/or environmental drivers beyond 

SES also contribute to spatial ASD risk patterns.

Utah offers a unique location to examine the spatial distribution of ASD risk because of its 

consistently high measured ASD prevalence (Pinborough-Zimmerman et al. 2012; CDC 

2012; CDC 2014), and an exploratory spatial analysis may clarify the mediating role of SES 

and demographic factors on ASD risk in Utah. Limitations of previous studies exploring 

ASD birth clusters include aggregation of data to areal units (Mazumdar et al. 2010; 

Mazumdar et al. 2012), the collapsing of multiple birth cohorts into one sample (Van Meter 

et al. 2010), and the absence of diagnostic age effects in statistical modeling (Mazumdar et 

al. 2010; Van Meter et al. 2010). These limitations justify further spatial analyses of ASD 

risk that address these confounding issues.

The current study uses a case-control design and point-level geocoded data to identify 

heightened areas of spatial ASD risk in successive birth cohorts ascertained at ages four, six, 

and eight in a three county surveillance region of Utah. Our objectives were: (1) to identify 

significantly heightened areas of ASD spatial relative risk at birth in five birth cohorts, and 

(2) to evaluate the degree to which spatial relative risk patterns are related to SES and 

demographic variables by analyzing individual-level socioeconomic and demographic 

correlates of ASD cases and controls born within versus outside heightened areas of relative 

risk.
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Methods

Case ascertainment

ASD cases were identified by the Utah Registry of Autism and Developmental Disabilities 

(URADD). In study year (SY) 2002, ASD ascertainment was conducted in children aged 

eight living in Davis, Salt Lake and Utah counties (see Figure 1 for map of Utah and the 

URADD surveillance region). In study years 2006 and 2008, the surveillance age range was 

expanded to include children aged four, six and eight residing in Davis, Salt Lake, and Utah 

counties (see Table 1).

Children with ASD were identified by querying administrative records of all major health 

and education sources in the ascertainment area. Specifically, medical sources such as the 

Utah Department of Health (UDOH), private and public clinics and hospitals, and 

behavioral health centers reported children who received ASD diagnostic codes including 

ICD-9 299.00, 299.01, 299.80, and 299.90 as mandated under Utah Health Code Chapter 26 

Title 7 Section 4. Similarly, the Utah State Office of Education (USOE) provided counts of 

children receiving special education services under an autism special educational 

classification. A child was classified as an ASD case by meeting at least one of two criteria: 

(1) received an ASD medical diagnosis from a qualified provider such as a developmental 

pediatrician, child psychiatrist, or clinical psychologist, and/or (2) received special education 

services under an autism educational classification (see Pinborough-Zimmerman et al. 2012 

for further detail).

Data linkage and selection of control population

Birth certificate vital records were obtained from the UDOH Office of Vital Records and 

Statistics for birth years 1994, 1998, 2000, 2002 and 2004. ASD cases were linked to their 

birth certificate using a deterministic linkage approach in SAS 9.2 (SAS Institute, Cary NC, 

USA) with successful linkage rates ranging from 61%–69%. There were no differences in 

the sex or race/ethnicity between children with ASD who were linked to their birth 

certificates versus children who were not linked to their birth certificates. Linkage success 

rates varied across years with no indication of improved matching over time. Overall, our 

linkage rates were low compared to ASD studies conducted in other US states (e.g. 

Mazumdar et al. 2012) but consistent with other Utah-based studies (e.g. Bilder et al. 2009). 

The majority of children not linked to their birth certificates were born outside of the 

surveillance area.

Birth certificate variables used in the analysis included sex, mother’s age at birth (maternal 

age), father’s age at birth (paternal age), mother’s level of educational attainment at birth 

(maternal education), father’s level of educational attainment at birth (paternal education), 

mother’s race/ethnicity, father’s race/ethnicity, and geocoded maternal residential birth 

address (see Table 2). The pre-, peri- and post-natal periods are largely thought to represent 

the critical windows of development for ASD (Hertz-Picciotto et al. 2006); the maternal 

birth address is commonly used to approximate a child’s location of exposure during this 

period when finer scale data is unavailable (e.g. residential and maternal work history 

questionnaire data). Maternal residential birth addresses were geocoded by the UDOH 
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Environmental Public Health Tracking Program as point locations in the Universal 

Transverse Mercator geographic coordinate system. Twenty controls were randomly 

selected per case from birth certificates using a weighted scheme that matched based on 

gender, birth cohort, and age. The probability of selection was weighted based on the 

distribution of births by US postal zip code to ensure that the control population’s spatial 

distribution reflected the geographical distribution of the background population. Separate 

control populations were derived for each birth cohort*age at ascertainment sample (see the 

spatial analysis section for further description of the samples). ASD cases were removed 

from the pool of potential controls and were not eligible for selection as part of the control 

population. Institutional Review Board approval to conduct this research was obtained from 

the University of Utah and UDOH.

Characterization of study population

We examined differences in children’s race/ethnicity, maternal age, paternal age, maternal 

education and paternal education between ASD cases and controls. Maternal age, paternal 

age, maternal education, and paternal education were converted into categorical variables 

with three levels (see Table 2) which were chosen based on previously published Utah 

studies (e.g. Pinborough-Zimmerman et al. 2011). Differences between ASD cases and 

controls among these variables were tested using χ2 goodness-of-fit tests. P-values from 

these tests were adjusted for multiple comparisons with the Benjamini-Hochberg procedure 

(Bejamini and Hochberg 1995) using the multtest procedure in SAS software, version 9.2 

(SAS Institute, Cary NC, USA). An alpha level of 0.05 was assumed for all statistical tests. 

The non-spatial analyses were conducted using SAS software, version 9.2 (SAS Institute, 

Cary NC, USA).

Spatial analysis

Adaptive kernel density functions (Davies and Hazelton 2010) were used to measure 

variation in spatial relative risk for ASD in the three county surveillance region (Davis, Salt 

Lake, and Utah counties). This approach tested the null hypothesis that the risk for ASD did 

not vary spatially across the surveillance region and that ASD cases were located 

independently of one another. First, the adaptive kernel densities of ASD cases and controls 

were separately estimated. Kernel densities represent the relative intensity of a point pattern 

process across a two-dimensional grid surface. Here, the point pattern process is the 

distribution of either ASD cases or their set of matched controls. At each grid point, the 

kernel density estimate assigns a probability of encountering a case or a control by finding a 

weighted average of case or control intensities across neighboring case or control locations 

(see Hazelton and Davies 2009 and Fernando and Hazelton 2014 for more information 

concerning kernel density estimation of relative risk).

Estimation of adaptive kernel densities requires the selection of one or more smoothing 

bandwidths which vary across the spatial extent of the surveillance region as a function of 

the density of case and control locations (Silverman 1986). In public health applications, 

adaptive kernel density functions are often preferred over fixed kernel density functions as 

they support varying levels of smoothing in response to a heterogeneously distributed 

population. The bandwidth parameter, hi, was estimated using least squares cross validation 

Bakian et al. Page 5

J Autism Dev Disord. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which has been shown to produce unbiased estimates of the mean integrated square error 

(Scott and Terrell 1986). Separate bandwidth parameters were estimated for each sample. 

Kernel density functions were corrected for edge-effects to avoid negative bias around the 

surveillance area boundary.

Next, the spatial relative risk function was computed as the ratio of the case to control 

adaptive kernel densities (Bithell 1990). We examined both the raw and the log of the spatial 

relative risk but used the log-risk function to test for significantly heightened areas of 

relative risk (Kelsall and Diggle 1995a, 1995b). Tolerance contours were constructed based 

on p-value surfaces using a z-test statistic approach (Hazelton and Davies 2009) to identify 

heightened areas of relative risk or relative risk “hotspots” (Davies and Hazelton 2010). 

Upper tailed tests for heightened areas of relative risk were conducted corresponding to a p-

value of 0.05. Although not a component of this study, two-tailed hypothesis tests can also 

be conducted using the kernel density approach to investigate areas of reduced risk for ASD 

which may be valuable for identifying factors that decrease a child’s likelihood of receiving 

an ASD diagnosis.

The analysis was conducted within polygons constructed to minimize the inclusion of 

unpopulated areas to reduce the possibility of identifying artefactual relative risk hotspots. 

Separate spatial analyses were conducted for each ascertainment age group in each 

surveillance year for a total of seven birth cohort* ascertainment age samples. For example, 

the 1994 birth cohort that was ascertained for ASD in 2002 at the age of 8 was labelled and 

referred to as the 1994–8 sample (see Table 1 for description of all samples and associated 

labels). The problem of multiple comparison testing was minimized by conducting single 

hypothesis tests across the entire surveillance area, selecting sensible smoothing bandwidths, 

and minimizing the inclusion of areas where data was absent. The spatial relative risk 

analysis was conducted in R (R Development Core Team 2012) using the sparr package 

(Davies, Hazelton, and Marshall 2011).

Association with individual-level demographic and SES variables

We used single and multiple logistic regression models to examine the association between 

being born in an ASD hotspot (independent of case versus control status) with individual-

level demographic and SES factors known to be associated with ASD risk. The boundaries 

of the heightened relative risk contours and the ASD case and control birth addresses were 

projected onto surveillance area maps in ESRI ArcGIS 10. The ASD cases and controls that 

fell within hotspot boundaries were identified by birth cohort, age at surveillance and 

surveillance year. Individual-level demographic and SES variables included in the models 

were child’s sex, child’s race/ethnicity, maternal age, and maternal education. Paternal age 

and paternal education were not included in the models due to their strong correlation with 

maternal age and maternal education as indicated by Pearson correlation coefficients 

(Pearson’s r > 0.50). First, associations were examined between each individual-level 

demographic and SES variable with birth in an ASD hotspot (single variable analysis). Next, 

all individual-level ASD variables were included in multiple logistic regression models 

(multiple variables analysis). Separate models were formulated for each birth 

cohort*ascertainment age sample.

Bakian et al. Page 6

J Autism Dev Disord. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To test for residual risk of ASD not explained by demographic or SES variables, we used 

multiple logistic regression models to examine the association between ASD case and 

control status (probability of being an ASD case or control) and birth in an ASD hotspot 

while adjusting the models for individual-level variables including child’s race/ethnicity, 

maternal age, and maternal education. In this analysis, the finding of a significant 

relationship between ASD case versus control status and birth in an ASD hotspot after 

controlling for individual-level demographic and socioeconomic factors associated with 

ASD would suggest that additional, untested factors exist that are related to the ASD 

hotspots.

Results

Study population characteristics

Pooling all study samples, the case and control populations were significantly different in 

their racial/ethnic composition (p=.0001), and in their frequencies of maternal age (p=.005), 

maternal education (p=.001), and paternal education (p=.001) (Table 2). However, when 

analyzed separately, we did not find uniform case-control differences in SES characteristics 

within each individual sample. The strongest evidence of socioeconomic differences 

between cases and controls were observed in the 1998 and 2000 birth cohorts (the 1998–8, 

2000–6 and 2000–8 samples) (see Online Resource 1).

Spatial analysis

ASD hotspots were identified in the surveillance region for each birth cohort*age sample 

with the exception of the 1998–8 sample (Table 1). As shown in Figure 2 and Table 1, the 

number of unique ASD hotspots ranged between one (1994–8 and 2004–4 samples) to three 

(2002–6 sample). Maximum relative risk in the hotspots ranged between 1.8 (2000–6 

sample) to 3.0 (2002–6 sample). The areas encompassed by the ASD hotspots ranged from 

41.22 km2 (2000–8 sample) to 359.29 km2 (2002–6 sample). The geographical stability of 

hotspots decreased with increasing ascertainment age across (Figure 2) and within (Figure 3) 

birth cohorts. All but one ASD hotspot were located in Salt Lake County. Utah County did 

not contain any ASD hotspots.

Individual-level demographic and SES models

Higher SES was associated with birth in an ASD hotspot, regardless of ASD case status in 

four out of six samples as indicated by the association between maternal education (a 

common proxy for SES) and birth in an ASD hotspot (Table 3). [Insert Table 3 here] 

Mothers of ASD cases and controls born within ASD hotspots were more likely to have 

acquired 14 or more years of education compared to mothers of ASD cases and controls 

born outside of ASD hotspots in the 2000–6 (AOR = 1.56, 95 % CI 1.25–1.96), 2002–4 

(AOR = 1.38, 95 % CI 1.06–1.80), 2002–6 (AOR = 1.25, 95 % CI 1.05–1.49), and the 

2002–4 (AOR = 1.29, 95 % CI 1.04–1.61) samples. Maternal education greater than 14 

years was not associated with increased odds of birth in an ASD hotspot in the 1998–8 

sample (AOR = 0.93, 95 % CI 0.64–1.35) and was protective in the 2000–8 sample (AOR = 

0.35, 95 % CI 0.22–0.56). Differences were measured in five out of six samples in the 

demographic composition of births in versus outside of ASD hotspots. ASD cases and 
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controls born within an ASD hotspot were less likely to be Hispanic than White non-

Hispanic in the 1994–8 (AOR = 0.35, 95 % CI 0.14–0.89), 2002–4 (AOR = 0.48, 95 % CI 

0.28–0.80) and 2002–6 (AOR = 0.55, 95 % CI 0.41–0.74) samples. Mothers of children born 

in an ASD hotspot were more likely to be at least 34 years of age in the 2000–8 (AOR = 

1.71, 95 % CI 1.00–2.90), 2002–4 (maternal age AOR = 1.82, 95 % CI 1.32–2.51), 2002–6 

(AOR = 1.3, 95% CI 1.04–1.62) and 2004–4 samples (AOR = 1.44, 95 % CI 1.09–1.89). 

Child’s gender was not found to be associated with birth in an ASD hotspot in any of the 

samples.

Figure 4 displays the odds of ASD associated with birth in an ASD hotspot after adjusting 

for individual-level demographic and socioeconomic factors related to ASD. An increased 

odds of ASD was associated with birth in an ASD hotspot following adjustment for 

demographic and socioeconomic variables for all samples with the exception of the 1994–8 

sample (AOR: 1.71, 95 % CI 0.89–3.28).

Discussion

ASD hotspots were identified in four out of five birth cohorts and two out of three Utah 

counties studied. The relative risk for ASD in the hotspots ranged from 1.8–3.0 indicating 

that children born inside of the hotspots were up to three times the risk for ASD than 

children living elsewhere in the surveillance region. This relative risk range is comparable to 

estimates from California-based studies which found that children born in certain areas of 

California were at 1.7–4 times the risk for ASD (Van Meter et al. 2010; Mazumdar et al. 

2010; Mazumdar et al. 2012).

The current study identified indicators of higher SES associated with children born within 

ASD hotspots compared to those born outside ASD hotspots, regardless of ASD case status. 

This association was evident for nearly all birth cohort*ascertainment age samples. In this 

study, a significant link was identified between SES, birth residence, and ASD risk, 

suggesting that the presence of ASD hotspots may be, at least in part, attributable to higher 

SES. Previous spatial analyses of ASD have also implicated SES’s associated effect with 

heightened ASD spatial risk (Van Meter et al. 2010; Mazumdar et al. 2010; Mazumdar et al. 

2012; Hoffman et al. 2012). However, some of these previous studies (Van Meter et al. 

2010; Mazumdar et al. 2010) did not explicitly account for what effects the inclusion in their 

samples of children diagnosed at different ages might have on birth ASD risk. In our 

analysis, diagnostic age impacted the identification of heightened areas of spatial relative 

risk for ASD at birth as reflected by the differences in spatial ASD risk patterns found 

among children from the same birth cohort identified at various ages. This suggests a 

contribution to spatial ASD birth risk patterns of factors associated with both ASD birth risk 

and the age at which a child with ASD is recognized.

The connection between ASD spatial relative risk and higher SES may reflect ascertainment 

bias favoring identification of ASD in higher SES classes (Fombonne 2003; Newschaffer et 

al. 2007). If so, this association may be expected to weaken as children age into public 

education settings where diagnostic services may be more accessible for those with lower 

SES. Previously published data on the current sample has shown that although the majority 
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of ASD cases were ascertained from medical sources, a small proportion were ascertained 

exclusively through school sources (Pinborough-Zimmerman et al. 2012). Not surprisingly, 

the proportion of exclusively school-ascertained cases in this study was found to rise with 

increasing age. The 2000 and 2002 birth cohorts were ascertained at two different ages (six 

and eight years in the 2000 birth cohort and four and six years in the 2002 birth cohort), 

providing an opportunity to assess the relationship between SES and ASD hotspots across 

ascertainment ages. The association between birth in an ASD hotspot and higher SES was 

present in the four and six year old 2000 and 2002 birth cohort samples but not in the eight 

year old 2000 birth cohort sample. In addition, another eight year old sample (1998–8) did 

not contain an ASD hotspot and the hotspots identified in the 1994–8 sample were not 

associated with higher SES. These findings support the hypothesis that SES and spatial ASD 

risk at younger ages may be linked, in part, through earlier access to diagnostic services.

Membership in an ASD hotspot was associated with being White, non-Hispanic in the 1994, 

1998 and 2002 birth cohorts which may be related to residential segregation in our 

surveillance area by race/ethnicity. The Latino/White, non-Hispanic racial residential 

segregation pattern is pronounced in Salt Lake County where it follows a west-east gradient 

(Downey and Timberlake 2006). Recent U.S. based studies show that measured ASD 

prevalence is consistently lower in Hispanic versus White, non-Hispanic populations (CDC 

2012; Liptak et al. 2008; Mandell et al. 2009; Pedersen et al. 2012). Although wide in Utah, 

this prevalence gap may be starting to shrink as indicated by comparisons of measured 

prevalence over time (CDC 2012). If racial residential segregation has indeed played a 

primary role in producing ASD hotspots, than we can expect the strength of the relationship 

between being White, non-Hispanic and membership in an ASD hotspot to diminish in 

future birth cohorts as ascertainment of ASD improves in Utah’s Hispanic population.

Conversely, multiple findings from our study suggest caution in inferring a causal SES or 

residential segregation mechanism for ASD hotspots including 1) the size and location of 

ASD hotspots varied by birth cohort, 2) the amount of hotspot overlap decreased as the gap 

in years between birth cohorts increased, 3) the strength of the relationship between high 

SES indicators and birth in an ASD hotspot was inconsistent across samples, 4) the 

association between ASD risk and birth in an ASD hotspot persisted after adjusting for 

demographic and SES factors related to ASD. These findings suggest that factors in addition 

to SES, such as social-influence effects (e.g. information diffusion through social networks) 

(Liu, King and Bearman 2010), variables related to diagnosis (Mazumdar et al. 2012), 

and/or local area environmental exposures may also drive spatial patterns of spatial ASD 

relative risk. In the URADD surveillance region, potential sources of environmental 

exposures during the prenatal and early postnatal periods include ambient air pollution, 

altitude, and, agricultural pesticides (e.g. Roberts et al. 2007; Kalkbrenner et al. 2010; Volk 

et al. 2013). Utah’s unique geographical and meteorological conditions merit a further 

examination of the association between these environmental exposures and ASD risk.

Maternal residential birth address was used to represent the geographic location of potential 

exposure to extrinsic risk factors for ASD during fetal development and immediately 

following birth. Although commonly used in geographical analyses of developmental 

disorders and birth defects (Rushton and Lolonis 1996; Gardner, Strickland and Correa 
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2007) weaknesses are associated with using maternal addresses to indicate exposure 

location. The exposure window for ASD is hypothesized to range from the prenatal to early 

post-natal period; however, the maternal residential birth address may not be an appropriate 

proxy for exposure during this entire range due to maternal mobility during pregnancy. 

Maternal mobility studies have found that 12–33% of mothers change residencies at some 

point between conception and birth (Canfield et al. 2006). In addition, maternal birth 

residence is a poor proxy for exposures occurring at locations outside the home such as the 

workplace. Another limitation was the use of birth certificate data for control group 

selection. Although residence within the surveillance area was confirmed for ASD cases at 

the time of surveillance, such confirmation could not be conducted for controls. There may 

have been ASD cases within the control group who moved out of the surveillance area prior 

to case ascertainment or were not identified by our surveillance system despite being 

residents in our surveillance area. The surveillance area’s largely urban setting presented an 

additional study limitation because the study’s findings may not be generalizable to rural 

areas. In SY2010, the URADD surveillance area expanded to include a rural county in Utah; 

future spatial analyses will address this limitation.

Despite these limitations, our study has numerous strengths, including the use of point-level 

data, the application of the kernel density estimator approach, and the inclusion of 

ascertainment age. The use of point-level data in spatial analyses is considered superior to 

using aggregated case and control data because it avoids the modifiable areal unit problem 

(Waller and Gotway 2004) and accommodates areas with small numbers of cases and 

controls (Gatrell 2002). Yet, hotspot detection studies that are conducted at the individual 

scale remain a rarity in health geography. The spatial kernel density approach provides the 

flexibility to identify heightened areas of spatial relative risk while accommodating 

significant contours and/or irregular shapes.

Differences identified in the size and location of ASD hotspots for individual birth cohorts 

illustrate the impact of a child’s age at ASD diagnosis on spatial analysis results and 

challenge the assumption that birth hotspots reflect factors exclusively present at birth. The 

spatial variation found among different ascertainment ages within single birth cohorts may 

also suggest diagnostic or ascertainment bias within the surveillance region, especially 

among younger children. Diagnostic bias could reflect variation in the distribution of ASD 

severity in the Utah surveillance area because of the well-established inverse relationship 

between age at diagnosis and ASD severity (Mandell et al. 2005; Shattuck et al. 2009). 

Unfortunately, we do not have a measure of severity associated with ASD case status, and 

cannot examine how ASD severity impacts spatial relative risk patterns at birth. However, 

one option would be to use the presence of co-morbid intellectual disability (ID) as a proxy 

for ASD severity and conduct a spatial analysis for ASD cases with and without co-

occurring ID, similar to the North Carolina study (Hoffman et al. 2012). We speculate that 

some discrepancies in spatial risk patterns related to children’s age may also be attributed to 

improved identification of higher functioning children with ASD by age eight and the 

contribution of data from education sources, as described earlier.
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Conclusions

Increased ASD risk is associated with higher SES in the majority of ASD hotspots identified 

in this study. Differences among ASD hotspots within single birth cohorts occurred as a 

function of ascertainment age, underscoring the importance of considering diagnostic age in 

future studies of ASD risk at birth. Further spatial analysis studies are merited to investigate 

additional risk factors and replicate Utah’s findings across larger, more diversified regions 

of the US.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Autism surveillance data was obtained through Centers for Disease Control and Prevention Cooperative Agreement 
UR3DD000685-03. Research analysis was supported by the Utah Registry of Autism and Developmental 
Disabilities, the National Institute of Mental Health of the National Institutes of Health under Award Number 
R01MH094400, and University of Utah Department of Psychiatry funds. Thank you to Drs. Harper Randall, Paul 
Carbone, Marc Babitz, Eric Fombonne, Barry Nangle and Sam LeFevre for feedback on earlier versions of this 
manuscript. Brian Robison provided editorial assistance. We are extremely grateful to our health and education data 
sources for their data contributions. The findings and conclusions in this report are those of the author(s) and do 
not necessarily represent the official position of the Centers for Disease Control and Prevention or the National 
Institutes of Health. The final publication is available at Springer via http://dx.doi.org/10.1007/s10803-014-2253-0.

References

Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of new neurobiology. 
Nature Reviews Genetics. 2008; 9:341–355.

Altevogt BM, Hanson SL, Leshner AI. Autism and the environment: challenges and opportunities for 
research. Pediatrics. 2008; 121(6):1225–1229. [PubMed: 18519493] 

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. Journal of the Royal Statistical Society Series B. 1995; 57(1):289–300.

Besag J, Newell J. The detection of clusters in rare diseases. Journal of the Royal Statistical Society. 
Series A. 1991; 154(Part 1):143–155.

Bhasin TK, Schendel D. Sociodemographic risk factors for autism in a US metropolitan area. Journal 
of Autism and Developmental Disorders. 2007; 37(4):667–677. [PubMed: 16951989] 

Bilder D, Pinborough-Zimmerman J, Miller J, McMahon W. Prenatal, perinatal, and neonatal factors 
associated with autism spectrum disorder. Pediatrics. 2009; 123(5):1293–1300. [PubMed: 
19403494] 

Bilder DA, Bakian AV, Viskochil J, Clark EAS, Botts EB, Smith KR, et al. Maternal prenatal weight 
gain and autism spectrum disorders. Pediatrics. 201310.1542/peds.2013-1188

Bithell JF. An application of density estimation to geographical epidemiology. Statistics in Medicine. 
1990; 9(6):691–701. [PubMed: 2218172] 

Bromley RL, Mawer G, Clayton-Smith J, Baker GA. Autism spectrum disorders following in utero 
exposure to antiepileptic drugs. Neurology. 2008; 71(23):1923–1924. [PubMed: 19047565] 

Burd L, Fisher W, Kerbeshian J. A prevalence study of pervasive developmental disorders in North 
Dakota. Journal of the American Academy of Child & Adolescent Psychiatry. 1987; 26(5):700–
703. [PubMed: 3499432] 

Canfield MA, Ramadhani TA, Langlois PH, Waller DK. Residential mobility patterns and exposure 
misclassification in epidemiologic studies of birth defects. Journal of Exposure Science and 
Environmental Epidemiology. 2006; 16(6):538–543. [PubMed: 16736057] 

Centers for Disease Control and Prevention Autism and Developmental Disabilities Monitoring 
Network Year 2008 Principal Investigators (CDC). Prevalence of autism spectrum disorders-

Bakian et al. Page 11

J Autism Dev Disord. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1007/s10803-014-2253-0


Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. 
MMWR Surveillance Summary. 2012; 61(3):1–19.

Centers for Disease Control and Prevention Autism and Developmental Disabilities Monitoring 
Network Year 2010 Principal Investigators (CDC). Prevalence of autism spectrum disorder among 
children aged 8 years-Autism and Developmental Disabilities Monitoring Network, 11 sites, 
United States, 2010. MMWR Surveillance Summary. 2014; 63(2):1–21.

Croen LA, Grether JK, Selvin S. Descriptive epidemiology of autism in a California population: who 
is at risk? Journal of Autism and Developmental Disorders. 2002; 32(3):217–224. [PubMed: 
12108623] 

Croen LA, Najjar DV, Bireman B, Grether JK. Maternal and paternal age and risk of autism spectrum 
disorders. Archives of Pediatrics and Adolescent Medicine. 2007; 161(4):334–340. [PubMed: 
17404129] 

Croen LA, Grether JK, Yoshida CK, Odouli R, Hendrick V. Antidepressant use during pregnancy and 
childhood Autism Spectrum Disorders. Archives of General Psychiatry. 2011; 68(11):1104–1112. 
[PubMed: 21727247] 

Davies TM, Hazelton ML. Adaptive kernel estimation of spatial relative risk. Statistics in Medicine. 
2010; 29(23):2423–2437. [PubMed: 20603814] 

Downey, DJ.; Timberlake, MF. Diversity in Deseret: Race/Ethnic Segregation and Inequality in Utah. 
In: Zick, CD.; Smith, KS., editors. Utah in the New Millennium: A Demographic Perspective. Salt 
Lake City, UT: University of Utah Press; 2006. p. 203-215.

Durkin MS, Maenner MJ, Meaney FJ, Levy SE, DiGuiseppi C, Nicholas JS, et al. Socioeconomic 
inequality in the prevalence of Autism Spectrum Disorder: evidence from a U.S. cross-sectional 
study. PLoS One. 2010; 5(7):1–8.

Fernando WTPS, Hazelton ML. Generalizing the spatial relative risk function. Spatial and Spatio-
temporal Epidemiology. 2014; 8:1–10. [PubMed: 24606990] 

Fiscella K, Williams DR. Health disparities based on socioeconomic inequalities: implications for 
urban health care. Academic Medicine. 2004; 79(12):1139–1147. [PubMed: 15563647] 

Fombonne E, Du Mazaubrun C, Cans C, Grandjean H. Autism and associated medical disorders in a 
French epidemiological survey. Journal of the American Academy of Child & Adolescent 
Psychiatry. 1997; 36(11):1561–1569. [PubMed: 9394941] 

Fombonne E. Epidemiological surveys of autism and other pervasive developmental disorders: an 
update. Journal of Autism and Developmental Disorders. 2003; 33(4):365–382. [PubMed: 
12959416] 

Gardner BR, Strickland MJ, Correa A. Application of the automated spatial surveillance program to 
birth defects surveillance data. Birth Defects Research Part A. 2007; 79(7):559–564.

Gatrell, AC. Geographies of Health: An Introduction. Oxford, United Kingdom: Wiley-Blackwell; 
2002. 

Grady SC. Racial disparities in low birthweight and the contribution of residential segregation: A 
multilevel analysis. Social Science & Medicine. 2006; 63(12):3013–3029. [PubMed: 16996670] 

Grether JK, Anderson MC, Croen LA, Smith D, Windham GC. Risk of autism and increasing maternal 
and paternal age in a large North American population. American Journal of Epidemiology. 2009; 
170(9):1118–1126. [PubMed: 19783586] 

Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and 
shared environmental factors among twin pairs with autism. Archives of General Psychiatry. 2011; 
68(11):1095–1102. [PubMed: 21727249] 

Hastie, T.; Tibshirani, R. Generalized Additive Models. New York: Chapman and Hall; 1990. 

Hazelton ML, Davies TM. Inference based on kernel estimates of the relative risk function in 
geographical epidemiology. Biometrical Journal. 2009; 51(1):98–109. [PubMed: 19197958] 

Hertz-Picciotto I, Croen LA, Hansen R, Jones CR, van de Water J, Pessah IN. The CHARGE study: an 
epidemiologic investigation of genetic and environmental factors contributing to autism. 
Environmental Health Perspectives. 2006; 114(7):1119–1125. [PubMed: 16835068] 

Hertz-Picciotto I, Delwiche L. The rise in autism and role of age at diagnosis. Epidemiology. 2009; 
20(1):84–90. [PubMed: 19234401] 

Bakian et al. Page 12

J Autism Dev Disord. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hoffman K, Kalbrenner AE, Vieira VM, Daniels JL. The spatial distribution of known predictors of 
autism spectrum disorders impacts geographic variability in prevalence in central North Carolina. 
Environmental Health. 2012; 11:80. [PubMed: 23113973] 

Hoffman K, Vieira VM, Daniels JL. Brief report: diminishing geographic variability in autism 
spectrum disorders over time? Journal of Autism and Developmental Disorders. 201310.1007/
s10803-013-1907-7

Kalkbrenner AE, Daniels JL, Chen J, Poole C, Emch M, Morrissey J. Perinatal exposure to hazardous 
air pollutants and autism spectrum disorders at age 8. Epidemiology. 2010; 21(5):631–641. 
[PubMed: 20562626] 

Kelsall JE, Diggle PJ. Kernel estimation of relative risk. Bernoulli. 1995a; 1(1–2):3–16.

Kelsall JE, Diggle PJ. Non-parametric estimation of spatial variation in relative risk. Statistics in 
Medicine. 1995b; 14(21–22):2335–2342. [PubMed: 8711273] 

Kuldorff M. Spatial scan statistic. Communications in Statistics-Theory and Methods. 1997; 26(6):
1481–1496.

Larsson HJ, Eaton WW, Madsen KM, Vestergaard M, Olesen AV, Agerbo E, et al. Risk factors for 
autism: perinatal factors, parental psychiatric history, and socioeconomic status. American Journal 
of Epidemiology. 2005; 161(10):916–925. [PubMed: 15870155] 

Lee M. Neighborhood residential segregation and mental health: A multilevel analysis on Hispanic 
Americans in Chicago. Social Science & Medicine. 2009; 68(11):1975–1984. [PubMed: 
19359082] 

Liptak GS, Benzoni LB, Mruzek DW, Nolan KW, Thingvoll MA, Wade CM, et al. Disparities in 
diagnosis and access to health services for children with autism: data from the National Survey of 
Children’s Health. Journal of Developmental & Behavioral Pediatrics. 2008; 29(3):152–160. 
[PubMed: 18349708] 

Liu KY, King M, Bearman PS. Social influence and the autism epidemic. American Journal of 
Sociology. 2010; 115(5):1387–1434.

London E, Etzel RA. The environment as an etiologic factor in autism: a new direction for research. 
Environmental Health Perspectives. 2000; 108(Suppl 3):401–404. [PubMed: 10852835] 

Mandell DS, Novak MM, Zubritsky CD. Factors associated with age of diagnosis among children with 
Autism Spectrum Disorders. Pediatrics. 2005; 116(6):1480–1486. [PubMed: 16322174] 

Mandell DS, Wiggins LD, Carpenter LA, Daniels J, DiGuiseppi C, Durkin MS, et al. Racial/ethnic 
disparities in the identification of children with autism spectrum disorders. American Journal of 
Public Health. 2009; 99(3):493–498. [PubMed: 19106426] 

Mason SM, Messer LC, Laraia BA, Mendola P. Segregation and preterm birth: The effects of 
neighborhood racial composition in North Carolina. Health & Place. 2009; 15(1):1–9. [PubMed: 
18359264] 

Mazumdar S, King M, Zerubavel N, Bearman PS. The spatial structure of Autism in California, 1993–
2001. Health & Place. 2010; 16(3):539–546. [PubMed: 20097113] 

Mazumdar S, Winter A, Liu K, Bearman P. Spatial clusters of autism births and diagnoses point to 
contextual drivers of increased prevalence. Social Science & Medicine. 201210.1016/j.socscimed.
2012.11.032

Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, et al. The epidemiology of 
autism spectrum disorders. Annual Review of Public Health. 2007; 28:235–258.

Osypuk TL, Acevedo-Garcia D. Are racial Disparities in preterm birth larger in hypersegregated 
areas? American Journal of Epidemiology. 2008; 167(11):1295–1304. [PubMed: 18367470] 

Pedersen A, Pettygrove S, Meaney FJ, Mancilla K, Gotschall K, Kessler DB, et al. Prevalence of 
Autism Spectrum Disorders in Hispanic and Non-Hispanic White Children. Pediatrics. 2012; 
129(3):e629–e635. [PubMed: 22351889] 

Persico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and 
environmental clues. Trends in Neurosciences. 2006; 29(7):349–358. [PubMed: 16808981] 

Pinborough-Zimmerman J, Bilder D, Bakian A, Satterfield R, Carbone PS, Nangle BE, et al. 
Sociodemographic risk factors associated with Autism Spectrum Disorders and Intellectual 
Disability. Autism Research. 2011; 4(6):1–11. [PubMed: 21328567] 

Bakian et al. Page 13

J Autism Dev Disord. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pinborough-Zimmerman J, Bakian AV, Fombonne E, Bilder D, Taylor J, McMahon WM. Changes in 
the administrative prevalence of autism spectrum disorders: contribution of special education and 
health from 2002–2008. Journal of Autism and Developmental Disabilities. 2012; 42(4):521–530.

R Development Core Team. R: A language and environment for statistical computing. R Foundation 
for Statistical Computing; Vienna, Austria: 2012. downloaded from http://www.R-project.org

Rai D, Lewis G, Lundberg M, Araya R, Svensson A, Dalman C, et al. Parental socioeconomic status 
and risk of offspring autism spectrum disorders in a Swedish population-based study. Journal of 
the American Academy of Child & Adolescent Psychiatry. 2012; 51(5):467–476. [PubMed: 
22525953] 

Ritvo ER, Breeman BJ, Pingree C, Mason-Brothers A, Jorde L, Jenson WR, et al. The UCLA-
University of Utah Epidemiologic Survey of Autism: Prevalence. American Journal of Psychiatry. 
1989; 146(2):194–199. [PubMed: 2783539] 

Roberts EM, Gross R, Weiser M, Bresnahan M, Silverman J, Wolff C. Maternal residence near 
agricultural pesticide applications and autism spectrum disorders among children in the California 
Central Valley. Environmental Health Perspectives. 2007; 115(1):1482–1489. [PubMed: 
17938740] 

Rushton G, Lolonis P. Exploratory spatial analysis of birth defect rates in an urban population. 
Statistics in Medicine. 1996; 15(7–9):717–726. [PubMed: 9132899] 

SAS Institute. SAS version 9.2. Cary, North Carolina, USA: SAS Institute; 2008. 

Scott, DJ.; Terrell, GR. Technical Report # 23. Department of Statistics, Stanford University; CA: 
1986. Biased and unbiased cross-validation in density estimation. 

Silverman, BW. Density estimation for statistics and data analysis. London, UK: Chapman and Hall; 
1986. 

Shattuck PT, Durkin M, Maenner M, Newschaffer C, Mandell DS, Wiggins L, et al. Timing of 
identification among children with an autism spectrum disorder: findings from a population-based 
surveillance study. Journal of the American Academy of Child & Adolescent Psychiatry. 2009; 
48(5):474–483. [PubMed: 19318992] 

Strömland K, Nordin V, Miller M, Akerström B, Gillberg C. Autism in thalidomide embryopathy: A 
population study. Developmental Medicine & Child Neurology. 1994; 36(4):351–356. [PubMed: 
8157157] 

Sutcliffe JS. Insights into the pathogenesis of autism. Science. 2008; 321(5886):208–209. [PubMed: 
18621658] 

Treffert DA. Epidemiology of infantile autism. Archives of General Psychiatry. 1970; 22(5):431–438. 
[PubMed: 5436867] 

Waller, LA.; Gotway, CA. Applied Spatial Statistics for Public Health Data. New York: John Wiley; 
2004. 

Walton E. Residential segregation and birth weight among racial and ethnic minorities in the United 
States. Journal of Health and Social Behavior. 2009; 50(4):427–442. [PubMed: 20099449] 

Webster T, Vieira V, Weinberg J, Aschengrau A. Method for mapping population-based case-control 
studies: an application using generalized additive models. International Journal of Health 
Geography. 2006; 5:26.

Windham GC, Zhang L, Gunier R, Croen LA, Grether JK. Autism spectrum disorders in relation to 
distribution of hazardous air pollutants in the San Francisco bay area. Environmental Health 
Perspectives. 2006; 114(9):1438–1444. [PubMed: 16966102] 

Windham GC, Anderson MC, Croen LA, Smith KS, Collins J, Grether JK. Birth prevalence of autism 
spectrum disorders in the San Francisco Bay area by demographic and ascertainment source 
characteristics. Journal of Autism and Developmental Disabilities. 2011; 41(10):1362–1372.

Van Meter KC, Christiansen LE, Delwiche LD, Azari R, Carpenter TE, Hertz-Picciotto I. Geographic 
distribution of Autism in California: A retrospective birth cohort analysis. Autism Research. 2010; 
3(1):19–29. [PubMed: 20049980] 

Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic-related air pollution, 
particulate matter, and autism. Archives of General Psychiatry. 2013; 70(1):71–77.

Zerbo O, Iosif A, Walker C, Ozonoff S, Hansen RL, Hertz-Picciotto I. Is maternal influenza or fever 
during pregnancy associated with autism or developmental delays? Results from the CHARGE 

Bakian et al. Page 14

J Autism Dev Disord. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org


(Childhood Autism Risks from Genetics and Environment) Study. Journal of Autism and 
Developmental Disorders. 2013; 43:25–33. [PubMed: 22562209] 

Bakian et al. Page 15

J Autism Dev Disord. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Utah and the URADD surveillance area in SY2002, 2006 and 2008. County seats are 

indicated in dark grey: Farmington in Davis County, Salt Lake City in Salt Lake County, 

and Provo in Utah County.
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Figure 2. 
Heightened areas of ASD relative risk in Utah by age group and surveillance year: A) 

children aged four at the time of surveillance in SY2006 (2002–4 sample; diagonal hatch) 

and SY2008 (2004–4 sample; yellow), B) children aged six at the time of surveillance in 

SY2006 (2000–6 sample; diagonal hatch) and SY2008 (2002–6 sample; blue), and C) 

children aged eight at the time of surveillance in SY2002 (1994–8 sample; diagonal hatch) 

and SY2008 (2000–8 sample; pink).
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Figure 3. 
Heightened areas of relative risk in Utah by birth cohort and surveillance year: A) children 

born in 2000 and ascertained in SY2006 at six years of age (2000–6 sample; diagonal hatch) 

and SY2008 at eight years of age (pink; 2000–8 sample), and B) children born in 2002 and 

ascertained in SY2006 at four years of age (2002–4 sample; diagonal hatch) and SY2008 at 

six years of age (2002–6 sample; blue).
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Figure 4. 
Adjusted odds ratios of Autism Spectrum Disorder (ASD) associated with birth in an ASD 

hotspot. Models are adjusted for sex, race/ethnicity, mother’s age at child’s birth, and 

mother’s education at child’s birth.
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Table 2

Characteristics of URADD ASD cases and controls

Characteristic

n (%)

Chi-square p-valueaControl (n=27,541) ASD case (n=1,090)

Gender 0.42

 Male 22,134 (80.4) 888 (81.5)

 Female 5,407 (19.6) 202 (18.5)

Race/ethnicity 0.001

 White non-Hispanic 21,231 (77.1) 902 (82.8)

 Hispanic 4,503 (16.4) 144 (13.2)

 Other 1,184 (4.3) 29 (2.7)

 Missing 623 (2.3) 15 (1.4)

Maternal age 0.005

 <21 years 3,339 (12.1) 114 (10.5)

 21–33 years 20,817 (75.6) 807 (74.0)

 34+ years 3,384 (12.3) 169 (15.5)

 Missing 1 (<0.01) 0 (0.0)

Paternal age 0.42

 <21 years 1,108 (4.0) 35 (3.2)

 21–33 years 18,910 (68.7) 744 (68.3)

 34+ years 5,666 (20.6) 228 (20.9)

 Missing 1,857 (6.7) 83 (7.6)

Maternal education 0.001

 <12 years 3,853 (14.0) 108 (9.9)

 12 or 13 years 10,898 (39.6) 464 (42.6)

 14+ years 12,451 (45.2) 504 (46.2)

 Missing 339 (1.2) 14 (1.3)

Paternal education 0.001

 <12 years 2,688 (9.8) 73 (6.7)

 12 or 13 years 8,326 (30.2) 368 (33.8)

 14+ years 13,818 (50.2) 523 (48.0)

 Missing 2,709 (9.8) 126 (11.6)

a
Adjusted using the Benjamini-Hochberg procedure
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